France taps nuclear know-how to recycle EV batteries


The French atomic and alternative energy commission is using its research facility in the southern centre of Marcoule to find ways to recycle the components used for clean technologies. — AFP

PARIS: In the cradle of France’s atomic programme, researchers are using their nuclear know-how for a key project in the country’s energy transition: recycling the raw materials in old electric vehicle (EV) batteries, solar panels and wind turbines.

The European Union has made building up its recycling capacity a key part of its strategy to become less reliant on Asia for critical metals such as lithium, nickel and silver.

The 27-nation bloc is trying to close the gap with China, which already recycles car batteries and has its own massive reserves of raw materials and refining capacity.

Reusing old components could help countries such as France, which do not have mines and rely on imports, narrow the gap.

The French atomic and alternative energy commission (CEA) is using its research facility in the southern centre of Marcoule to find ways to recycle the components used for clean technologies.

The sprawling campus, where France’s nuclear weapons and energy programmes were born, is so sensitive that images of its location are blurred out or pixelated on Google Maps.

But the CEA gave reporters a rare tour to show off its recycling work ahead of a conference on critical metals to be hosted by the International Energy Agency in Paris today.

Many of the techniques used by Marcoule researchers come from their know-how in recycling nuclear waste, an area in which France is a world leader.

The goal is to recover the materials and use them on an industrial scale, said Richard Laucournet, head of the new materials department at the CEA centre.

“We are looking at how to store, convert and transport electricity, and how to make the energy transition efficient,” said Laucournet.

“Thanks to the simulation tools developed here, we can reprocess rare earths from magnets.”

In one lab, researchers peer into a metre-thick window as they operate large, bike handle-like robotic arms to cut out irradiated fuel rods.

The alloy sections are placed in hot acid solutions to make the metal dissolve.

Afterwards it can be extracted again via the use of organic solvents and decanters.

The process can recover lithium, nickel, cobalt and graphite from the black mass that comes from crushing the EV battery cells.

Researchers saidy the technique developed at Marcoule will be useful for recycling fuels from future fourth-generation nuclear reactors as well as rare earths from magnets.

This technology is all the more useful since there is “no real magnet recycling sector” in the world except scrap in Asia, said Laucournet.

Another technique at the centre is to use carbon dioxide to detach and inflate solar panel cells, allowing the recovery of silicon and silver contained inside.

For wind turbine blades, the CEA is applying the same process with “supercritical water” that it has been working on for 20 years in a bid to remove radioactivity from metals in a liquid state.

Supercritical water at very high temperature and high pressure has the power to penetrate inside the materials and to break the polymer chains of the fibreglass or carbon composites that make up wind turbine blades and hydrogen tanks. — AFP

Follow us on our official WhatsApp channel for breaking news alerts and key updates!

   

Next In Business News

Wyn-ning solution for family travel
Nasdaq dreams aside, LYC must first focus on profitability
VS Industry eyes RM150mil capex
Licensing, freedom of expression and nation-building
Asia Internet is no longer Cuscapi’s substantial shareholder
Russia’s rich shop away despite sanctions
Riding the data centre wave
Shedding light on power tariff hike
What’s cooking in NY’s Upper East Side?
Singapore gets a break, Malaysia faces a hike

Others Also Read